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Abstract

Recent experiments of Gröblacher et al proved the violation of a Leggett-type
inequality that was claimed to be valid for a broad class of non-local hidden-
variable theories. The impossibility of constructing a non-local and realistic
theory, unless it entails highly counterintuitive features, seems thus to have
been experimentally proved. This would bring us close to a definite refutation
of realism. Indeed, realism was proved to be also incompatible with locality,
according to a series of experiments testing Bell inequalities. The present paper
addresses the said experiments of Gröblacher et al and presents an explicit,
contextual and realistic, model that reproduces the predictions of quantum
mechanics. It thus violates the Leggett-type inequality that was established
with the aim of ruling out a supposedly broad class of non-local models. We
can thus conclude that plausible contextual, realistic, models are still tenable.
This restates the possibility of a future completion of quantum mechanics by
a realistic and contextual theory which is not in a class containing only highly
counterintuitive models. The class that was ruled out by the experiments of
Gröblacher et al is thus proved to be a limited one, arbitrarily separating models
that physically belong in the same class.

PACS numbers: 03.65.Ud, 03.67.−a, 03.65.−w

1. Introduction

Recently, Gröblacher et al [1] reported experiments performed with two entangled photons,
showing the violation of a Leggett-type inequality that was derived by the said authors.
According to them, such a violation rules out a broad class of hidden-variable (HV) models
based on non-local realism. This would be an important step toward answering the question
about the completeness of quantum mechanics (QM), a question that was raised by Einstein,
Podolsky and Rosen in their celebrated paper of 1935. Several experiments testing Bell
inequalities served the purpose of closing the detection and the locality loopholes, and for
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many—though not for all [2]—researchers in the field, ‘it is reasonable to consider the
violation of local realism as well established fact’ [1]. Accordingly, a completion of QM
through a HV theory would require that this theory should be based upon the concept of
non-locality. Theories of this kind are sometimes taken on an equal basis as ‘contextual’
theories and, in fact, the Leggett-type inequality that was tested by Gröblacher et al does
not distinguish contextuality from non-locality. It simply admits as a possibility that
measurement outcomes may depend on parameters in distant regions, without specifying
whether the involved separations are spacelike or timelike. The class defined by the Leggett-
type inequality may include certain non-local realistic theories, but the experiments performed
by Gröblacher et al were not able to distinguish these theories from local contextual ones.
Indeed, for the events involved (photon detection or emission) the time coordinate is not
registered and the settings remain fixed. Hence, one cannot tell whether spacetime intervals
�s2 ≡ c2�t2 −�x2 −�y2 −�z2 between pairs of events are timelike, spacelike, or light-like,
excepting the restricted class of simultaneous events (�t = 0, e.g., coincidences in photon
detections), for which they are spacelike. Strictly speaking, there is a difference between
‘non-locality’ and ‘contextuality’. ‘Non-locality’ is often understood in a relativistic sense
(causal influences can travel faster than light), while ‘contextuality’ refers to the fact that a
measurement outcome or the state of a system may generally depend on the context in which
the measurement takes place or the system is prepared1. Now, the ambiguity concerning ‘non-
local’ and ‘contextual’ models can be removed if we ask the model maker to consider changes
in the context and to tell after how much time these changes should manifest themselves
in the measurement results. Whatever the answer, the model will be either local or non-
local. Note that ‘contextual-local’ theories are not excluded from the outset, as it might
appear at first sight. Indeed, a relativistic theory may admit contextuality if it requires fixing
boundary conditions to solve its fundamental equations. Physically, one assumes that these
conditions have been fixed well in advance so as to allow causal influences to propagate,
without conflicting relativity, from the boundaries toward those parts of the system that are the
subject of the fundamental equations. If we instead consider boundary conditions that change
with time, then we are faced with the choice between locality and non-locality. Here we will
mostly use the term contextuality rather than non-locality, because the cases we shall address
do not distinguish whether the spacetime intervals between events (e.g., measurements) are
timelike or spacelike. The recently reported experiments [1] are said to exclude a broad class
of non-local HV models. Because the experimental arrangement of Gröblacher et al could not
distinguish local from non-local influences, we prefer to use the term ‘contextual’ rather than
‘non-local’ when referring to it. Anyhow, Gröblacher et al arrived at the conclusion that any
possible completion of QM through a realistic HV theory would be a highly counterintuitive
one, entailing exotic features such as a departure from Aristotelian logic, actions into the
past, etc. Here we show that the class of contextual models addressed in the experiments
of Gröblacher et al is—from a physical point of view—a rather limited one. Indeed, as we
shall see, this class arbitrarily excludes a type of contextual models that should have been
addressed, for the approach to be physically self-consistent. The exclusion of these models
invalidates, in fact, the claim of Gröblacher et al. To show this, we will present an explicit,
contextual model that violates the Leggett-type inequality that the reported experiments put to
the test. Of course, the Leggett-type inequality remains true for the restricted class considered
by Gröblacher et al. Our claim is that this class is physically unsound, for the following
reason. Gröblacher et al derived a Leggett-type inequality for a class of non-local models in

1 The term ‘non-local’ is nevertheless often used in a non-relativistic sense also, for example when referring to
quantum correlations, these correlations being not necessarily attributed to superluminal causal influences.
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which there are two measuring devices (e.g., polarizers) and a source (of entangled pairs).
Furthermore, following Leggett, they relaxed the locality assumption for the polarizers, so that
measurement outcomes at one device could depend on the settings of the other. However, the
source was supposed to be somehow ‘protected’ from any non-local influences, a condition
that appears to be physically unsound once we have relaxed the locality assumption. In the
present case, we will assume non-locality for the source as well as for the polarizers. To be
sure, Leggett’s original assumption of a source being exclusively influenced by conditions on
its neighborhood could be—in principle—experimentally realized, as we will discuss next,
but the experiments of Gröblacher et al were not designed to fulfil this requirement.

Leggett’s assumption of a ‘protected’ source, referred to above, could be fulfilled in
experiments with variable polarizers. Such experiments could test non-local models besides
contextual ones. Let us first consider testing contextual local hidden-variable models. Within
such a framework we could conceive an arrangement for which the settings of the polarizers
constitute events that are spacelike separated from the emission at the source. In this way,
the source becomes effectively ‘protected’ from non-local influences and the distribution
describing it (see below) can be assumed to be independent of a context that is beyond its
immediate neighborhood. Let us consider next non-local models. In this case, though we
abandon the framework of special relativity, it is still reasonable to assume that we may define
an absolute future with respect to a given event in some reference frame, e.g., the laboratory.
Under this assumption, we could again ‘protect’ the source from non-local influences, by
making sure that the settings of the polarizers be in the absolute future of the emission at
the source. Admittedly, it would be extremely difficult to perform experiments of this kind,
particularly in those cases in which the emission at the source constitutes an stochastic process.
Nevertheless, as a matter of principle, it is not quite unreasonable to assume that the emission
at the source be uninfluenced by the settings of distant polarizers.

Finally, we should stress that the ‘free will assumption’ is not an issue here, for similar
reasons as those just discussed. According to the free will assumption, an operator is free
to choose between different measurement settings [4], i.e., choices are not predetermined by
some initial conditions. We will consider experimental situations like the one addressed by
Gröblacher et al in which the settings of the instruments are not changed during the flight of
the particles. If these settings are fixed ‘sufficiently in advance to allow them to reach some
mutual rapport by exchange of signals with velocity less than or equal to that of light’ [5],
contextual models—as already said—may well be in accordance with relativity. If, in contrast,
the settings were changed by an operator during the flight of the particles, then contextual
models could violate relativistic causality. A way to avoid this possible conflict with relativity
is to relax the free will assumption and consider that the actual settings of the instruments by
an operator have been fixed in the past by some initial conditions, thereby making free will a
mere illusion. The models considered here do not address the question of free will, because
they assume fixed settings.

The paper is organized as follows. Section 2 begins with a discussion of the experiment
of Gröblacher et al. In subsection 2.1 we introduce the Kochen–Specker model for a single
qubit in a form which is amenable to generalization. Building upon this model we present in
subsection 2.2 an extension that works for two qubits. This is the central result of the paper.
Finally, in section 3 we present our conclusions.

2. The Kochen–Specker model and its extension to the non-local case

Gröblacher et al [1] carried out experiments with two entangled qubits which were realized
as polarization entangled photons generated via spontaneous parametric down-conversion.
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The contextual models that were put to the test should satisfy the following assumptions:
(1) measurement outcomes reveal pre-existing properties (realism2); (2) physical states are
mixtures of subensembles with definite properties (e.g., polarization); (3) the expectation
values taken for each subensemble coincide with the predictions of QM (e.g., polarization
states obey Malus’ law).

Consider a source emitting pairs of photons toward two measuring devices whose
respective settings, as given by unit vectors na and nb, are fixed by Alice and Bob in each run
of the experiment. The emitted photons have well-defined polarizations nu and nv . Let us
denote by A and B the outcomes for polarization measurements along na and nb, respectively.
Their values are ±1, corresponding to transmission/absorption of a photon. By writing, e.g.,
A = A(λ, na, nb) ≡ A(λ, a, b) we make explicit reference to the assumption that Alice’s
results may depend on Bob’s settings and that the model is, thus, contextual. Let ρuv(λ) be
the subensemble distribution of the photon pairs emitted by the source with polarizations nu

and nv . It is required that, according to Malus’ law, local averages satisfy

A =
∫

dλ ρuv(λ)A(λ, a, b) = nu · na,

B =
∫

dλ ρuv(λ)B(λ, b, a) = nv · nb.

(1)

For a source emitting well-polarized photon pairs the correlation function of measurement
results is given by AB(u, v) = ∫

dλ ρu,v(λ)A(λ, a, b)B(λ, b, a). For a more general
source, we assume to have at our disposal a distribution function F(u, v) that describes
the mixture of polarized pairs produced by the source. The general correlation function
is thus given by Eab = 〈AB〉 = ∫

du dv F (u, v)AB(u, v). So far, we have followed the
assumptions and, closely, the notation of Gröblacher et al. These authors derived a Leggett-
type inequality to be experimentally tested. The said inequality follows from the identities
−1 + |A + B| = AB = 1 − |A − B|, which are fulfilled whenever A = ±1 and B = ±1.
Multiplying these identities by ρuv(λ), integrating over λ and noting that |A ± B| � |A ± B|,
one obtains −1 + |A + B| � AB � 1 − |A − B|. Further multiplication byF(u, v) and
subsequent integration over (u, v) leads to a Leggett-type inequality that puts a bound on the
correlations Eab predicted by a contextual HV model. QM predicts Eab = −na · nb and
these values violate the said inequality. The experiments of Gröblacher et al reproduce the
quantum-mechanical predictions with high accuracy. Now, as we observe from the above
definitions, contextuality has been restricted to the measurement outcomes of Alice and Bob,
as if the source could not be affected by, e.g., Bob’s settings, while A could be affected by such
settings. This is, of course, an arbitrary assumption from the viewpoint of a contextual model.
All the more, if we recall that what is considered a ‘source’ (or part of it) in one experiment,
may be dubbed as ‘measuring device’ in the other. A contextual model should consistently
assume functions of the form ρuv(λ, a, b) and F(u, v, a, b). Though the derivation of the
Legget-type inequality presented in [1] appears to be insensitive to a possible contextuality of
ρuv , a distribution function of the form F(u, v, a, b) invalidates the derivation of the Legget-
type inequality of [1] (see supplementary information to [1, 3]). Hence, the contextual models
that have been tested in the experiments of Gröblacher et al belong to a restricted class. This
class would be defined through the nonphysical assumption that sources and measuring devices
are differently influenced by the experimental context, the sources being somehow ‘protected’
from contextual influences. In fact, it is possible to construct an explicit contextual model that
reproduces the experimental results reported in [1], as we shall see next. The construction is

2 I use the term ‘realism’ as it is defined by Gröblacher et al. Alternatively, for some authors ‘realism’ can be defined
so as to allow that measurement results be generated at the moment of measurement.
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based on the Kochen–Specker (KS) model for a single qubit [6, 7]. We will first discuss the
KS model, but in a way that departs from its original formulation. Our approach has been
tailored in a way that can be generalized to the two-qubit case.

2.1. The Kochen–Specker model for a single qubit

In the KS model, the HVs λ span the unit sphere S2. Thus, λ can be parameterized
as a unit vector nλ = (sin θλ cos ϕλ, sin θλ sin ϕλ, cos θλ). Henceforth we will write,
interchangeably, λ or nλ, for these and all other unit vectors playing the role of HVs.
Now, S2 is also the Bloch sphere, which serves to represent geometrically a qubit |ψ〉 =
cos(θψ/2) e−iϕψ/2|+〉 + sin(θψ/2) eiϕψ/2|−〉, where |±〉 are the Sz-eigenvectors. Indeed, we
can assign to each |ψ〉 a unit vector nψ = (sin θψ cos ϕψ, sin θψ sin ϕψ, cos θψ) on the Bloch
sphere and, reciprocally, to each unit vector nψ ∈ S2 it corresponds a normalized qubit
state |ψ〉 (modulo a phase). The KS model assigns to each qubit |ψ〉 a probability density
ρψ(λ) dλ, with dλ being a suitable measure. This corresponds to a completion through HVs
of the supposedly ‘incomplete’ description of physical reality that is provided by the state
vector |ψ〉. Consider now Alice’s observable Â. As is well known, it can be written in the
form Â = a0 + a · σ , where σ stands for the triple of Pauli matrices. The eigenvectors of Â

will be denoted by
∣∣ψ±

a

〉
. They are the same as those of na · σ , with na = a/|a|. To projection

operators like 	̂±
a = ∣∣ψ±

a

〉〈
ψ±

a

∣∣ we assign characteristic dichotomic functions, χ±
a (λ), each

taking the values 1 and 0, in correspondence to whether a given event does or does not take
place. For example, χ+

a (λ) states whether a measurement of Â along na does or does not
produce a ‘positive’ result (e.g., detection along the upward direction in a Stern–Gerlach
set-up), and similarly for χ−

a (λ) (counting now as ‘positive’ a detection along the downward
direction in the Stern–Gerlach set-up). That is, if χ+

a (λ) = 1, then χ−
a (λ) = 0, and vice versa.

Hence, we can write A(λ) = χ+
a (λ) − χ−

a (λ). The functions ρψ(λ) dλ and χ±
a (λ) should be

chosen so as to afford, for all |ψ〉, that

〈ψ |	̂±
a |ψ〉 =

∫
ρψ(λ)χ±

a (λ) dλ. (2)

The model then reproduces all quantum-mechanical predictions about probabilities of
measurement outcomes, in the sense that for all qubits |ψ〉 and for any operator Â, it holds
true that 〈ψ |Â|ψ〉 = ∫

ρψ(λ)A(λ) dλ. This suffices for our present purposes, although, if
required, we could also prescribe the dynamics between measurements. Equation (2) will be
satisfied if for any |ψa〉 and |ψb〉, such that ni ·σ |ψi〉 = |ψi〉, i = a, b, we define ρa(λ) dλ and
χb(λ) so that |〈ψb | ψa〉|2 = 〈ψa|	̂b|ψa〉 = 〈ψb|	̂a|ψb〉 = cos2(θab/2) = ∫

ρa(λ)χb(λ) dλ,
where θab = cos−1(na · nb). The following definition, due to KS, satisfies our requirements
and serves as a basis for handling the two-qubit case. It is based on the fact that each unit
vector divides S2 in two hemispheres. We define ρa(λ) as being different from zero only
on the intersection of the northern hemispheres of na and nλ = λ, where it takes the value
nλ · na/π . This can be expressed with the help of Heaviside’s step function (�(x) = 1, for
x � 0 and �(x) = 0, for x < 0) as

ρa(λ) = nλ · na

π
�(nλ · na). (3)

On the other hand, the characteristic functions are defined as

χ±
i (λ) = �

(
nλ · n±

i

)
, i = a, b. (4)

Here, n±
b —similarly to n±

a —are in one-to-one correspondence with the eigenvectors
∣∣ψ±

b

〉
of Bob’s observable B̂ = b0 + b · σ . Next, we show that

∫
ρa(λ)χ+

b (λ) dλ = cos2(θab/2)

5
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and
∫

ρa(λ)χ−
b (λ) dλ = sin2(θab/2), as desired. The measure is taken to be dλ ≡ dSλ =

sin θλ dθλ dϕλ, the surface element on the unit sphere.
Let us take na = n+

a ↔ ∣∣ψ+
a

〉
and nb = n+

b ↔ ∣∣ψ+
b

〉
, for concreteness. Note that,

because 〈ψa|	̂b|ψa〉 = 〈ψb|	̂a|ψb〉, it should hold true that Iab ≡ ∫
ρa(λ)χb(λ) dλ =∫

ρb(λ)χa(λ) dλ ≡ Iba . Writing Iab more explicitly we obtain

Iab = 1

π

∫
nλ · na�(nλ · na)�(nλ · nb) dλ = 1

π

∫
Na∩Nb

na · nλ dSλ, (5)

where Na ∩ Nb ≡ Sab is the area over which the integration is effectively restricted by
�(nλ · na)�(nλ · nb). Na and Nb are the northern hemispheres belonging to the Poles na

and nb, respectively. Now, the last expression in equation (5) expresses Iab as a flux integral.
Defining the vector field va(r) = na × r/2, we have na = ∇ × va(r), so that, by applying
Stoke’s theorem, we obtain

Iab = 1

π

∫
Sab

∇ × va(r) · nλ dSλ = 1

π

∮
∂Sab

va(rλ) · drλ

= 1

2π

∮
∂Sab

na × rλ · drλ = 1

2π

∮
∂Sab

(
rλ × drλ

ds
· na

)
ds,

(6)

where ∂Sab means the contour limiting Sab and ds is the arc length used to parameterize the
curve rλ(s) ≡ nλ(s) on S2, so that drλ/ds is a unit-vector tangent to the sphere. The contour
∂Sab limiting Sab is made of two great circles, Ca and Cb, the ‘equators’ relative to na and nb,
respectively. They intersect at two antipodal points, P1 and P2, say. The contour integral can
thus be split into two line integrals, one going from P1 to P2 along Ca , and the other from P2

back to P1 along Cb. Each of these curves is half a great circle and has thus a length equal to π .
Now, rλ × drλ/ds is also a unit vector—the so-called bivector in the theory of curves—which
equals na along Ca and nb along Cb. Whence,

Iab = 1

2π

(∫
Ca

na · na ds +
∫

Cb

nb · na ds

)

= 1

2
(1 + nb · na) = cos2

(
θab

2

)
.

(7)

The case nb = n−
b = −n+

b gives Iab = (1 − nb · na)/2 = sin2(θab/2), and this completes
the proof. Our procedure also makes clear how the symmetry under na ↔ nb arises, so that
Iab = Iba , as already mentioned.

2.2. A Kochen–Specker model for the two-qubit case

Let us now turn to the two-qubit case, specifically addressing the experiment reported by
Gröblacher et al [1]. Our aim is to give a counterexample for a ‘no-go’ assertion which
states that no contextual HV model—within a wide class—would be capable of explaining
the results of the said experiment. If this assertion were true, then a wide class of contextual
HV models would have been ruled out by the experiment. As already mentioned, this
experiment was conceived as a test of a Leggett-type inequality that was derived from the
following assumptions: (i) in experiments using a source that emits pairs of photons with well-
defined polarizations nu and nv , each emitted pair belongs to a subensemble that is defined
through a density ρuv . Measurements performed by Alice and Bob—possibly influencing
each other in a non-local way—produce outputs obeying Malus’ law, equation (1). (ii) For
a general source producing mixtures of polarized photons, there is a function F(u, v), ruling
the distribution of polarizations. Under these circumstances, a Leggett-type inequality should

6
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hold true [1]. However, QM violates this inequality and is in accordance with the results
obtained in the experiment [1]. The source that was used in the experiment produced
polarization-entangled singlet states |�−〉AB = (|H 〉A|V 〉B − |V 〉A|H 〉AB)/

√
2 of vertically

(V ) and horizontally (H) polarized photons, by means of a standard type-II parametric down-
conversion process. We construct next a contextual model satisfying the above requirements
and being in accordance with the predictions of QM. This model will be tailored so as to
reproduce the results of the particular experiment we have in sight, i.e., we will assume
an initial distribution that corresponds to the singlet state |�−〉AB . To this end, let us first
set ρuv(λ1, λ2) = ρ+

u (λ1)ρ
+
v (λ2), where ρ+

u , ρ+
v are defined as in equation (3). We will see

that this choice enforces Malus’ law. Thereafter, we will choose an appropriate contextual
distribution F(u, v) that describes the initial state. Note that we have divided the HVs into
two groups: λ = (λ1, λ2). A possible interpretation of this division is that λ1 relates to Alice’s
measuring device and λ2 to Bob’s. This interpretation would be consistent with the assumption
of contextual influences acting upon the source. Alternatively, one could take λ1,2 to be
parameters that are carried by the particles that are registered by Alice and Bob. In such a case,
ρuv would have been locally defined. It is straightforward to see that our ρuv satisfies Malus’
law. Indeed,

∫
dλ2 dλ1ρuvχ

±
a (λ1) = ∫

dλ2 ρ+
v (λ2)

∫
dλ1 ρ+

u (λ1)χ
±
a (λ1) = (1 ± nu.na)/2, so

that A = ∫
dλ ρuvA(λ1) = ∫

dλ ρuv

(
χ+

a (λ1) − χ−
a (λ1)

) = nu · na . Here, we have used
the results of the first part, i.e., that ρ+

u (λ) is normalized, and equation (7) with nb → nu.
Similarly, one obtains B = ∫

dλ ρuvB(λ2) = nv · nb. Because our ρuv factorizes, then
AB(u, v) = A · B = (nu · na)(nv · nb), so that

Eab = 〈AB〉 =
∫

du dv F (u, v)AB(u, v) =
∫

du dv F (u, v)(nu · na)(nv · nb). (8)

Let us now take a contextual distribution function which is appropriate for our scopes. A
possible choice is the following one:

Fab(u, v) = 1

2π2

(
χ+

a (λu)χ
−
a (λv) + χ−

b (λu)χ
+
b (λv)

)
. (9)

With this Fab(u, v) we obtain the desired result, i.e., that Eab = 〈AB〉 = −na · nb, in
accordance with the quantum-mechanical prediction. Indeed, replacing equation (9) in
equation (8) Eab can be written as the sum of two terms: Eab = (Ia + Ib)/2, with
Ij = ∫

dλu dλv(nu · na)(nv · nb)χ
+
j (λu)χ

−
j (λv)/π

2, (j = a, b). We can calculate the two
integrals following a similar procedure as we did before:

Ia = 1

π2

∫
dλu dλv(nu · na)(nv · nb)χ

+
a (λu)χ

−
a (λv)

=

1︷ ︸︸ ︷
1

π

∫
dλu χ+

a (λu)(nu · na)

∫
dλv(nv · nb)

χ−
a (λv)

π

= 1

π

∫
Sa

∇ × vb(rλ) · nλ dSλ

= 1

2π

∮
Ca

nb × rλ · drλ

= 1

2π

∮
Ca

rλ × drλ

ds
· nb ds

= −na · nb. (10)

Here, Sa is the southern hemisphere of na, Ca its equator, and vb(r) = nb × r/2. We have
applied Stokes’ theorem as in equation (6), but now the contour Ca is oriented clockwise. In a

7
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similar way one obtains Ib = ∫
dλu dλv(nu · na)(nv · nb)χ

+
b (λu)χ

−
b (λv)/π

2 = −na · nb,
so that Eab = 〈AB〉 = (Ia + Ib)/2 = −na · nb, as desired. Note that by taking
Fa(u, v) = (

χ+
a (λu)χ

−
a (λv)

)
/π2 we would have obtained the same result. We chose Fab

for the sake of symmetry between the two parties. In any case, we have succeeded in
constructing a counterexample, i.e., a contextual HV model that reproduces the predictions of
QM for a particular case, namely, the experiment performed by Gröblacher et al.

Although we have worked out in detail a particular case, it is clear that our procedure
could be extended so as to mimic QM in a general case. That is, for cases in which the
initial state is not the singlet state, we could also construct a contextual HV model. The
singlet state is one of the four states that constitute the standard Bell basis, which is given
by |�±〉 = (|H 〉A|V 〉B ± |V 〉A|H 〉AB)/

√
2 and |�±〉 = (|V 〉A|V 〉B ± |H 〉A|H 〉AB)/

√
2. We

have seen that 〈�−|AB|�−〉 = −na · nb. For the other Bell states, 〈AB〉 can be expressed
in terms of the components of na = (ax, ay, az) and nb = (bx, by, bz) as 〈�+|AB|�+〉 =
axbx + ayby − azbz, 〈�+|AB|�+〉 = axbx − ayby + azbz and 〈�−|AB|�−〉 = −axbx +
ayby + azbz. Now, it is clear from our above results that we can easily choose an appropriate
distribution Fab(u, v) for all Bell states, as we did for |�−〉. Indeed, take for example the state
|�+〉. We can write 〈�+|AB|�+〉 = (na ·ex)(nb ·ex)+ (na ·ey)(nb ·ey)− (na ·ez)(nb ·ez), with
ex, ey, ez being the unit vectors with respect to which we have defined the coordinates of na

and nb. Having expressed 〈�+|AB|�+〉 in terms of scalar products, it is straightforward
to choose Fab(u, v) by looking at the derivation of equation (10). Indeed, from an
analogous calculation we can readily prove that

∫
dλu dλv(nu · na)(nv · nb)χ

+
i (λu)χ

±
j (λv)/

π2 = ±(na · ei)(nb · ej ), i, j = x, y, z. Hence, we can choose Fab(u, v) so as to obtain
any desired combination of scalar products when we insert it into equation (8). A general,
initial state |�〉 can be written as a linear combination of the Bell states. One can then easily
check that 〈�|AB|�〉 contains only binary products of the Cartesian components of na and
nb. Thus, the above result applies for the general case of an arbitrary initial state |�〉. The case
of an initial mixed state can be dealt with by writing a combination of different distributions
Fab(u, v) with appropriate weights.

3. Conclusions

In view of the two-qubit model we have discussed, we can draw the following conclusions.
Our model reproduces the predictions of QM for the experiment of Gröblacher et al and hence
violates the Legget-type inequality derived in [1]. Though one can qualitatively consider
other, simpler realistic non-local models that are not addressed by the Leggett inequality [9],
the one presented here is an explicit one, that is very akin to those considered by Leggett and
by Gröblacher et al. The point of departure from the derivation presented in [1] is that we
considered a contextual distribution Fab(u, v) instead of the non-contextual F(u, v) that was
assumed in [1, 3]. Within a contextual theory it is certainly justified to take Fab(u, v) together
with contextual densities ρuv(λ, a, b). Moreover, as already mentioned, contextual densities
or distributions would not be extraneous to a classical approach. They could be thought of as
arising from solving some fundamental partial differential equations. To prescribe ‘boundary
conditions’ in order to solve these equations would be tantamount to allow ‘contextuality’.
We can therefore conclude that the experiments recently reported by Gröblacher et al [1] do
not address a broad plausible class of contextual, hidden-variable models. They did address
a class whose defining feature requires that models pertaining to it may ascribe contextual
qualities to the measuring devices, but not to those devices that were included as part of a
‘source’. Being deliberately provocative, let us illustrate the said defining feature by referring
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to quantum optics experiments. Advocates of the aforementioned class must contend that
even though the action of a calcite crystal (in front of a detector) could be affected by distant
devices, the action of a beta-barium-borate crystal (in a source) could not. This can hardly be
an assumption worth to be tested. Instead of conducting experiments of increased refinement
[8] to test realistic models of a class that could have been discarded from the outset, it would be
more meaningful to introduce, for instance, variable polarizers as a tool for testing non-locality.
Consider for instance an experiment with variable polarizers that yields the results predicted
by QM. The model presented here could be slightly modified so as to explain such results, but
at the cost of entering into the class of highly counterintuitive ones. Let us finally mention that
by properly testing contextuality in physically plausible HV models one could complement
some recently proposed experiments that address determinism together with non-contextuality
[10, 11]. If these experiments do confirm the predictions of QM, then contextuality should
be necessarily included in any fundamental description of physical phenomena, unless we are
ready to admit an inherent indeterminacy in the ultimate nature of these phenomena. In other
words, we would be faced with the choice between contextuality and indeterminism.
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